Perfect Powers in Smarandache Type Expressions

نویسنده

  • Florian Luca
چکیده

In [2] and [31 the authors ask how many primes are of the Smarandache form (see [10]) x Y + yX, where gcd (x, y) = 1 and x, y ~ 2. In [6] the author showed that there are only finitely many numbers of the above form which are products of factorials. In this article we propose the following Conjecture 1. Let a, b, and c be three integers with ab i= O. Then the equation with x, y, n ~ 2, and gcd (x, y) = 1, has finitely many solutions (x, y, z, n). We announce the following result: Theorem 1. The "abc Conjecture" implies Conjecture 1.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Powers in the Smarandache Cubic Product Sequences

Let P and Q denote the Smarandache cubic product sequences of the first kind and the second kind respectively. In this paper we prove that P contains only one power 9 and Q does not contain any power.

متن کامل

On the Smarandache Lucas base and related counting function

for n ~ 0, Lo = 2, L1 = 1, Fo = 0 and FI = 1. These sequences playa very important role in the studies of the theory and application of mathematics. Therefore, the various properties of Ln and Fn were investigated by many authors. For example, R. L. Duncan [1] and L. Kuipers [2J proved that (logFn) is uniformly distributed mod 1. H.London and R.Finkelstein [3] studied the Fibonacci and Lucas nu...

متن کامل

Products of Factorials in Smarandache Type Expressions

In [3] and [5] the authors ask how many primes are of the form xY + yX, where gcd (x, y) = 1 and x, y 2: 2. Moreover, Jose Castillo (see [2]) asks how many primes are of the Smarandache form xil + X2 X3 + ... + Xn Xl , where n > 1, Xl, X2, ••• , Xn > 1 and gcd (Xl, X2, ••• , X n ) = 1 (see [9]). In this article we announce a lower bound for the size of the largest prime divisor of an expression...

متن کامل

The Pseudo-smarandache Function

The Pseudo-Smarandache Function is part of number theory. The function comes from the Smarandache Function. The Pseudo-Smarandache Function is represented by Z(n) where n represents any natural number. The value for a given Z(n) is the smallest integer such that 1+2+3+ . . . + Z(n) is divisible by n. Within the Pseudo-Smarandache Function, there are several formulas which make it easier to find...

متن کامل

On the Universality of Some Smarandache Loops of Bol-moufang Type

A Smarandache quasigroup(loop) is shown to be universal if all its f, g-principal isotopes are Smarandache f, g-principal isotopes. Also, weak Smarandache loops of Bol-Moufang type such as Smarandache: left(right) Bol, Moufang and extra loops are shown to be universal if all their f, g-principal isotopes are Smarandache f, gprincipal isotopes. Conversely, it is shown that if these weak Smaranda...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014